47 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			47 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | ||
| title: "自注意力和多头注意力"
 | ||
| date: 2022-09-19T20:35:33+08:00
 | ||
| tags: []
 | ||
| categories: []
 | ||
| weight: 50
 | ||
| show_comments: true
 | ||
| katex: true
 | ||
| draft: false
 | ||
| ---
 | ||
| 
 | ||
| <!--more-->
 | ||
| 
 | ||
| ## 自注意力
 | ||
| 
 | ||
| 众所周知,注意力就是一个 query 和多个 key-value 对的带权和,如下:
 | ||
| 
 | ||
| $$
 | ||
| Attention(Q, K, V) = V.softmax(score(K, V))
 | ||
| $$
 | ||
| 
 | ||
| 当 Q == K == V 的时候,这个计算就叫做自注意力
 | ||
| 
 | ||
| ## 多头注意力
 | ||
| 
 | ||
| 假如 Head = 4, 那么如下,其中每一个 Q,K,V 都是完整大小的 Q,K,V,相当于做了 3 次注意力,其中每一个 W 都是可以学习的参数(因为 attention 的计算方法中没有可学习的参数,所以在计算 attention 前加一个线性变换,训练这个线性变换的参数)
 | ||
| 
 | ||
| $$
 | ||
| head_1 = Attention(W_1^QQ, W_1^K, W_1^VV)
 | ||
| \\\\
 | ||
| head_2 = Attention(W_2^QQ, W_2^K, W_2^VV)
 | ||
| \\\\
 | ||
| head_3 = Attention(W_3^QQ, W_3^K, W_3^VV)
 | ||
| \\\\
 | ||
| head_4 = Attention(W_4^QQ, W_4^K, W_4^VV)
 | ||
| $$
 | ||
| 
 | ||
| 最后,4 次 attention 结果连接起来,使用另外一个大的线性变换:
 | ||
| 
 | ||
| $$
 | ||
| Multihead(Q, K, V) = W^O[head_1, head_2, head_3, head_4]
 | ||
| $$
 | ||
| 
 | ||
| ## 参考
 | ||
| 
 | ||
| https://www.adityaagrawal.net/blog/deep_learning/attention
 | 
